Validity of the Actiheart step test for the estimation of maximum oxygen consumption in endurance athletes and healthy controls

Juliane Heydenreich, Yves Schutz, Katarina Melzer, Bengt Kayser


Submaximal step tests are often used for estimation of maximum oxygen consumption (VO2max) in humans. The validity of the Actiheart step test for VO2max estimation was not fully studied yet. Therefore, purpose of the study was to estimate VO2max using the Actiheart step test and to compare the data with measured VO2max in endurance trained athletes (ATH) and healthy non-athletes (CON).

68 ATH (54% men, 28.0±5.4 yrs, 20.9±1.7 kg∙m-2) and 63 CON (46% men, 27.6±5.1 yrs, 22.1±1.7 kg∙m-2) performed the Actiheart step test and a spiroergometry for assessment of VO2max. In addition, resting metabolic rate (RMR; indirect calorimetry), maximum heart rate (HRmax; heart rate monitoring system during spiroergometry), and sleeping heart rate (SHR; Actiheart 6-day long term measurement) were determined. Validity of two different Actiheart software entry modes was assessed: (1) AHraw (estimated RMR [Schofield] and HRmax [Tanaka], SHR = 70 bpm) and (2) AHcomplete (measured RMR, HRmax, and SHR). Validity was investigated using linear regression (R2 and standard error of the estimate (SEE)) and repeated-measures ANOVA with a Bonferroni post-hoc correction. The level of significance was set to α=0.05.

VO2max estimated by AHraw was significant related to measured VO2max in women CON (R2=0.22; p<0.05), whereas when VO2max was estimated by AHcomplete the relation was significant in women ATH and CON, and in men CON (R2=0.17-0.24; p<0.05). AHraw significantly underestimated VO2max in the total sample by 8% (51.4±10.2 vs. 55.9±7.6 ml∙kg-1∙min-1; p<0.0001), whereas no significant difference between AHcomplete and the criterion method was found (57.0±11.1 vs. 55.9±7.6 ml∙kg-1∙min-1; p=0.26).

The Actiheart step test is an acceptable tool for the estimation of VO2max if an error within 8% can be tolerated. However, accuracy of the VO2max prediction is much improved when entering measured variables, such as RMR, SHR, and HRmax, into the software.


maximum oxygen consumption; athletes; cardiorespiratory fitness; exercise testing; metabolic equivalent

Full Text:



American Thoracic Society, & American College of Chest Physicians. (2003). ATS/ACCP Statement on cardiopulmonary exercise testing. American Journal of Respiratory and Critical Care Medicine, 167 (2), 211–277. Doi: 10.1164/rccm.167.2.211

Åstrand, P. O., & Rodahl, K. (1970). Textbook of work physiology. New York: McGraw-Hill.

Åstrand, P. O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. Journal of Applied Physiology, 7 (2), 218–221. Doi: 10.1152/jappl.1954.7.2.218

Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32 (1), 70–84.

Bennett, H., Parfitt, G., Davison, K., & Eston, R. (2016). Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults. Sports Medicine, 46 (5), 737–750. Doi: 10.1007/s40279-015-0445-1

Björkman, F., Ekblom-Bak, E., Ekblom, Ö., & Ekblom, B. (2016). Validity of the revised Ekblom Bak cycle ergometer test in adults. European Journal of Applied Physiology, 116 (9), 1627–1638. Doi: 10.1007/s00421-016-3412-0

Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8 (2), 135–160. Doi: 10.1177/096228029900800204

Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2 (2), 92–98.

Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., … Kraemer, R. R. (2018). Validity of wearable activity monitors during cycling and resistance exercise. Medicine and Science in Sports and Exercise, 50 (3), 624–633. Doi: 10.1249/MSS.0000000000001471

Brage, S., Brage, N., Ekelund, U., Luan, J., Franks, P. W., Froberg, K., & Wareham, N. J. (2006). Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. European Journal of Applied Physiology, 96 (5), 517–524. Doi: 10.1007/s00421-005-0112-6

Brage, S., Westgate, K., Franks, P. W., Stegle, O., Wright, A., Ekelund, U., & Wareham, N. J. (2015). Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PloS One, 10 (9), e0137206. Doi: 10.1371/journal.pone.0137206

Buckley, J. P., Sim, J., Eston, R. G., Hession, R., & Fox, R. (2004). Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. British Journal of Sports Medicine, 38 (2), 197–205.

Butte, N. F., Wong, W. W., Adolph, A. L., Puyau, M. R., Vohra, F. A., & Zakeri, I. F. (2010). Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. The Journal of Nutrition, 140 (8), 1516–1523. Doi: 10.3945/jn.109.120162

Carver, T. E., Christou, N. V., & Andersen, R. E. (2013). In vivo precision of the GE iDXA for the assessment of total body composition and fat distribution in severely obese patients. Obesity (Silver Spring, Md.), 21 (7), 1367–1369. Doi: 10.1002/oby.20323

Cohen, J. (1988). Statistical Power Analysis for Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.

Compher, C., Frankenfield, D., Keim, N., Roth-Yousey, L., & Evidence Analysis Working Group. (2006). Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. Journal of the American Dietetic Association, 106 (6), 881–903. Doi: 10.1016/j.jada.2006.02.009

Crouter, S. E., Churilla, J. R., & Bassett, D. R. (2008). Accuracy of the Actiheart for the assessment of energy expenditure in adults. European Journal of Clinical Nutrition, 62 (6), 704–711. Doi: 10.1038/sj.ejcn.1602766

Francis, K., & Brasher, J. (1992). A height-adjusted step test for predicting maximal oxygen consumption in males. The Journal of Sports Medicine and Physical Fitness, 32 (3), 282–287.

Francis, K., & Culpepper, M. (1989). Height-adjusted, rate-specific, single-stage step test for predicting maximal oxygen consumption. Southern Medical Journal, 82 (5), 602–606.

Hansen, D., Jacobs, N., Thijs, H., Dendale, P., & Claes, N. (2016). Validation of a single-stage fixed-rate step test for the prediction of maximal oxygen uptake in healthy adults. Clinical Physiology and Functional Imaging, 36 (5), 401–406. Doi: 10.1111/cpf.12243

Hind, K., Oldroyd, B., & Truscott, J. G. (2011). In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults. European Journal of Clinical Nutrition, 65 (1), 140–142. Doi: 10.1038/ejcn.2010.190

Howley, E. T., Bassett, D. R., & Welch, H. G. (1995). Criteria for maximal oxygen uptake: review and commentary. Medicine and Science in Sports and Exercise, 27 (9), 1292–1301.

Knight, E., Stuckey, M. I., & Petrella, R. J. (2014). Validation of the step test and exercise prescription tool for adults. Canadian Journal of Diabetes, 38 (3), 164–171. Doi: 10.1016/j.jcjd.2014.03.007

Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., … Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA, 301 (19), 2024–2035. Doi: 10.1001/jama.2009.681

Lee, J.-M., Kim, Y., & Welk, G. J. (2014). Validity of consumer-based physical activity monitors. Medicine and Science in Sports and Exercise, 46 (9), 1840–1848. Doi: 10.1249/MSS.0000000000000287

Majerczak, J., Korostynski, M., Nieckarz, Z., Szkutnik, Z., Duda, K., & Zoladz, J. A. (2012). Endurance training decreases the non-linearity in the oxygen uptake-power output relationship in humans: Endurance training and oxygen uptake-power output relationship. Experimental Physiology, 97 (3), 386–399. Doi: 10.1113/expphysiol.2011.062992

Manore, M. M., & Thompson, J. L. (2010). Energy requirements of the athlete: assessment and evidence of energy efficiency. In L. M. Burke & V. Deakin (Eds.), Clinical Sports Nutrition (pp. 96–115). North Ryde: McGraw-Hill Australia Pty Ltd.

Marti, B., Villiger, B., Hintermann, M., & Lerch, R. (1998). Plötzlicher Herztod beim Sport: sinnvolle Vorsorgeuntersuchungen und Präventionsmassnahmen. Schweizerische Zeitschrift für "Sportmedizin und Sporttraumatologie", 46 (2), 83–85.

McArdle, W. D., Katch, F. I., Pechar, G. S., Jacobson, L., & Ruck, S. (1972). Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Medicine and Science in Sports, 4 (4), 182–186.

Midgley, A. W., Bentley, D. J., Luttikholt, H., McNaughton, L. R., & Millet, G. P. (2008). Challenging a dogma of exercise physiology: does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes? Sports Medicine, 38 (6), 441–447.

Mundwiler, J., Schüpbach, U., Dieterle, T., Leuppi, J. D., Schmidt-Trucksäss, A., Wolfer, D. P., … Brighenti-Zogg, S. (2017). Association of occupational and leisure-time physical activity with aerobic capacity in a working population. PloS One, 12 (1), e0168683. Doi: 10.1371/journal.pone.0168683

Myers, J., Arena, R., Franklin, B., Pina, I., Kraus, W. E., McInnis, K., … Balady, G.J. (2009). Recommendations for clinical exercise laboratories: a scientific statement from the American heart association. Circulation, 119 (24), 3144–3161. Doi: 10.1161/CIRCULATIONAHA.109.192520

Nelson, M. B., Kaminsky, L. A., Dickin, D. C., & Montoye, A. H. K. (2016). Validity of consumer-based physical activity monitors for specific activity types. Medicine and Science in Sports and Exercise, 48 (8), 1619–1628. Doi: 10.1249/MSS.0000000000000933

Perroni, F., Cortis, C., Minganti, C., Cignitti, L., & Capranica, L. (2013). Maximal oxygen uptake of Italian firefighters: laboratory vs. field evaluations. Sport Sciences for Health, 9 (2), 31–35. Doi: 10.1007/s11332-013-0142-0

Petrella, R. J., Koval, J. J., Cunningham, D. A., & Paterson, D. H. (2001). A self-paced step test to predict aerobic fitness in older adults in the primary care clinic. Journal of the American Geriatrics Society, 49 (5), 632–638.

Robergs, R. A., Dwyer, D., & Astorino, T. (2010). Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Medicine, 40 (2), 95–111. Doi: 10.2165/11319670-000000000-00000

Roos, L., Taube, W., Beeler, N., & Wyss, T. (2017). Validity of sports watches when estimating energy expenditure during running. BMC Sports Science, Medicine & Rehabilitation, 9, 22. Doi: 10.1186/s13102-017-0089-6

Santo, A. S., & Golding, L. A. (2003). Predicting maximum oxygen uptake from a modified 3-minute step test. Research Quarterly for Exercise and Sport, 74 (1), 110–115. Doi: 10.1080/02701367.2003.10609070

Scharhag-Rosenberger, F. (2010). Spiroergometrie zur Ausdauerleistungsdiagnostik. Deutsche Zeitschrift für Sportmedizin, 61 (6), 146-147.

Schofield, W. N. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition. Clinical Nutrition, 39 Suppl 1, 5–41.

Société canadienne de physiologie de l’exercice. (2002). Questionnaire sur l’aptitude à l’activité physique (Q-AAP). Retrieved 25 August 2016 from

Steiner, T., & Wehrlin, J. P. (2011). Does hemoglobin mass increase from age 16 to 21 and 28 in elite endurance athletes? Medicine and Science in Sports and Exercise, 43 (9), 1735–1743. Doi: 10.1249/MSS.0b013e3182118760

Sykes, K., & Roberts, A. (2004). The Chester step test—a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy, 90 (4), 183–188. Doi: 10.1016/

Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37 (1), 153–156.

Taylor, H. L., Buskirk, E., & Henschel, A. (1955). Maximal oxygen intake as an objective measure of cardio-respiratory performance. Journal of Applied Physiology, 8 (1), 73–80. Doi: 10.1152/jappl.1955.8.1.73

Thompson, D., Batterham, A. M., Bock, S., Robson, C., & Stokes, K. (2006). Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. The Journal of Nutrition, 136 (4), 1037–1042. Doi: 10.1093/jn/136.4.1037

Villars, C., Bergouignan, A., Dugas, J., Antoun, E., Schoeller, D. A., Roth, H., … Simon, C. (2012). Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men. Journal of Applied Physiology, 113 (11), 1763–1771. Doi: 10.1152/japplphysiol.01413.2011

Webb, C., Vehrs, P. R., George, J. D., & Hager, R. (2014). Estimating VO2max using a personalized step test. Measurement in Physical Education and Exercise Science, 18 (3), 184–197. Doi: 10.1080/1091367X.2014.912985

Weir, J. B. D. B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. The Journal of Physiology, 109 (1–2), 1–9.

Zoladz, J. A., Rademaker, A. C., & Sargeant, A. J. (1995). Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans. The Journal of Physiology, 488 (Pt 1), 211–217.

Zoladz, J. A., Szkutnik, Z., Majerczak, J., & Duda, K. (1998). Detection of the change point in oxygen uptake during an incremental exercise test using recursive residuals: relationship to the plasma lactate accumulation and blood acid base balance. European Journal of Applied Physiology and Occupational Physiology, 78 (4), 369–377.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.